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How THMC processes are handled in 
Performance Assessment

-
focus on the Damaged Zone (DZ)

Xavier Sillen
SCK•CEN

(Belgian Nuclear Research Centre)

First Training Course: THM behaviour of clays
in deep excavation with application to

underground radioactive waste disposal

Objectives of this presentation

! Closing the loop...
! As we come near the end of this training course, you 

already know a lot about the THM(C) behaviour of clays 
and the principles of radioactive waste management

! ...by bringing the pieces together
! Provide a back-ground on the stakes associated with the 

damaged zone (DZ) in the working of a complete disposal 
system
� How a repository in clay is supposed to work (& evolve)

! Illustrate how the DZ has been handled in previous 
performance assessments (PA) exercises
� Results of past assessments
� Typical PA needs
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! Objectives of this presentation """"

! Repository systems in clay
! Typical layouts
! Long-term safety
! The roles of clay
! Expected temperature evolution (current designs)

! Handling of a damaged zone in performance 
assessment
! Performance assessment
! The damaged zone (DZ)
! How the DZ has been handled until now

! How to ensure seamless integration of DZ / THM(C) 
research & PA ?

Plan

Repositories in clay

! Typical layout, Switzerland
! SF/HLW and ILW
! from Opalinus Clay project 

(NAGRA NTB 02-05, 2002)

! Multiple barriers, incl.:
! Canister,
! Bentonite,
! Opalinus Clay,
! ...
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Repositories in clay

! Typical layout, Belgium
! ONDRAF/NIRAS
! Boom Clay

! Multiple barriers, incl.:
! Concrete buffer
! ...

Long-term safety of a repository system

! Multiple, passive, safety barriers
! Internationally recognized requirement (IAEA, NEA,...)
! Man-made barriers, the "engineered barrier system" (EBS)
! Natural barriers: geological setting (TIMODAZ: clay)

! Thus, barriers are parts of a repository system
! Redundancy
! Interactions

� + : concrete buffer #### High pH #### low corrosion rate of overpack
� - : concrete can perturb clay, enhance glass dissolution rate
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Long-term safety of a repository system

! Barriers contribute to the safety functions

! Isolation (I): prevent direct access, inadvertent human 
intrusion and limit consequences (damage to system)

! Confinement (C): as much as possible, let radionuclides 
decay within the disposal system

! Delay and attenuation of the releases (retardation, R) to 
the environment of radionuclides that do not decay to 
insignificance within the system

multiple barriers and safety 
functions, example (NAGRA, 2002)
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multiple barriers and safety 
functions, example (NAGRA, 2002)

Safety functions can be detailed 
further, example (ONDRAF 2006)

! Delay and attenuation of the releases (retardation, R) 
to the environment of radionuclides that do not decay 
to insignificance within the system

! R1: limit the release rate from waste packages (conditions 
favourable to slow degradation of packaging, waste matrix)

! R2: limit water flow through the system (diffusion is 
dominant transport mechanism for radionuclides)

! R3: retard contaminant migration (precipitation, sorption)

! Note: safety functions come in different flavours, but always 
closely related to the concentrate and confine strategy
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The roles of clay

! Intrinsically favourable properties with respect to 
repository safety functions:
! very low permeability (####R2)

� natural hydraulic gradients: small flow rates
� solute transport is mainly diffusive (advection is very small)

! low pore diffusion coefficients for solutes (####R3)
! ionic sorption capacity (####R3)
! anionic exclusion (####R3)
! swelling capacity, creep (####R2)

� closure of (technological) gaps

! + Indirect contributions to safety
! Provide stable, favourable environment to EBS (####R1, C)

� Mechanical, chemical stability
! (Self-)sealing capacity ####robustness against disruptions

The roles of clay

! Evaluations of the overall performance of repositories 
usually stress the dominant contribution of the clay
! In the "expected evolution" scenario
! In some (many, most ?) "altered evolution" scenarios

! Examples
! Computed release rates, HLW repository in Opalinus Clay

� delaying and attenuation of releases !
� use of radiotoxicity units (weighting scheme, to sum over RNs)

! Released fraction, single radionuclide
� released fraction = time-integrated (or cumulated) release over [0, ∞]
� different pictures for different radionuclides !



7

Computed release rates, HLW 
repository in Opalinus Clay

! rel. rate into buffer:
! < 1 mSv/year
! Max at 10,000 years
! 239Pu, 243Am

! rel.rate into Opa. Clay:
! < 0.01 mSv/year
! Max after 65,000 years
! 135Cs

! rel. rate into biosphere:
! < 0.000001 mSv/year
! Max after 1,000,000 years
! 129I, 79Se

time-integrated (or cumulated) release 
of 126Sn, SF repository in Boom Clay
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Expected temperature evolution

! Source term (SF: W/ton, VHLW: W/ton reprocessed)
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Expected temperature evolution

! Expected temperature increase (∆∆∆∆T) above gallery, (VHLW, Boom Clay)
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Expected temperature evolution

! Expected temperature increase (∆∆∆∆T) above gallery, (VHLW, Boom Clay)
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Expected temperature evolution

! Expected temperature increase (∆∆∆∆T) above gallery, (VHLW, Boom Clay)
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Expected temperature evolution

! Expected radial temperature profiles, (SF, Opalinus Clay)

  

Expected temperature evolution

! Side note: what is more important (critical) ?
! Absolute (peak) T ?
! dT/dr ?
! dT/dt ?
! Time-at-temperature (integral) ?

! Beware of arbitrary T criteria...
! ...as evolution depends on T-controlled processes.
! Thermal evolution is (much) more than T° evolution !
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! Objectives of this presentation """"

! Repository systems in clay """"
! Typical layouts
! Long-term safety
! The roles of clay
! Expected temperature evolution (current designs)

! Handling of a damaged zone in performance 
assessment
! Performance assessment
! The damaged zone (DZ)
! How the DZ has been handled until now

! How to ensure seamless integration of DZ / THM(C) 
research & PA ?

Plan

Performance Assessment (PA) 
(this slide was shamelessly stolen from Schneider & Zuidema, NAGRA)

!Aims of analysis
! quality of the system $$$$ any needs to modify system?
! quality of understanding (& confidence in conclusions) $$$$ future R+D?
in relation to safety of system (not everything is important)

!Phases of performance assessment
! phenomenological analysis (get full picture, identify the issues relevant for 

safety: contribution to safety, potential to undermine safety)
! address uncertainties: variability, lack of data / understanding
! quantification of performance (& effect of uncertainties $$$$ sensitivity)
! synthesis: the main findings (quality of system, confidence in results)

!Nature of the analysis: the need for …
! … completeness (RNs, components, phenomena) $$$$ uncertainties
! … simplifications (not everything can be depicted in all details)
! … justification (incl. how to deal with incomplete understanding) &    

compilation of independent (often imperfect) evidence
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The Damaged Zone (DZ)

! Definition:
! Some variants do exist…

� SELFRAC (EDZ, EdZ)
� National programmes
� NEA

! "Zone around underground openings that may have
altered properties relevant to the post-closure 
performance of the overall repository system"

(Zuidema, EDZ Cluster Luxembourg, 2003)

! Definition in a specific context !

! Initiated by repository construction
! Can be limited by appropriate excavation technique
! Cannot be completely avoided

The Damaged Zone (DZ)

! As conditions changes, the DZ evolves:
! Open drift (suction, O2 ,… )
! Waste emplacement (heating starts)
! Initial closure (begin of EBS saturation)
! Heating-cooling period
! Long-term chemical (biological ?) evolution
! EBS failure, radionuclide releases

! Many T,H,M,C processes !
! Exhaustive Features, Events & Processes lists (FEP's)

� FEP's traditionally viewed as building blocks for building scenarios
� Nowadays, the trend is toward the use of FEP's as checklist

TIMODAZ
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How the DZ can be handled in PA

! In previous PA exercises ('90s, early '00s)
! (E)DZ = region of enhanced permeability
! Concern: advection of radionuclides by water flowing 

through DZ, bypassing the geological barrier
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How the DZ can be handled in PA

! Are concerns about a bypass through the DZ justified ?
! High permeability is not sufficient by itself !
! Flow requires available fluid, difference of potential
! Whole flow system has to be examined FLUID

FLOW ?
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How the DZ can be handled in PA

! Are concerns about a bypass through the DZ justified ?
! High permeability by itself is not sufficient !
! Flow requires available fluid, difference of potential
! Whole flow system has to be examined FLUID

FLOW ?

How the DZ can be handled in PA
! Are concerns about a bypass through the DZ justified ?

! An efficient bypass needs an externally- (fracture ?) or 
internally- (gas ?) provided driving force

! Even then, matrix diffusion into the clay remains active !
! A lot of radionuclides can be lost from the DZ along the way !

 DIFFUSIVE
FLUX

ADVECTIVE
FLUX ?
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How the DZ can be handled in PA: example
! Several examples of calculations that hint at limited 

releases through the DZ are available
! BENIPA (Poor sealing scenario)
! Bauer et al. (EDZ Cluster 2003)
! Nagra 2002, Smith et al., 2004

 
kDZ=10-12m/s kDZ=10-8m/s(flow rate levels off)

How the DZ can be handled in PA

! So, permeability increase is only part (possibly minor) 
of the story

! Less attention has been given to radionuclide transport 
properties within the DZ
! Alheid et al., NF-PRO, 2005
! Not easy to obtain experimentally
! Damage #### porosity, connectivity, apparent diffusion changes
! Reactivity can be different from intact clay #### sorption change
! End result can be positive or negative
! Concern: radionuclide transport could be enhanced within DZ
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How the DZ can be handled in PA: example

! Example of handling of DZ migration parameters in a 
performance assessment (adapted from SAFIR-2, 2001)
! …by ignoring the DZ altogether !
! Effective thickness of clay barrier is reduced by DZ 

thickness
! Simple, conservative…
! …once the DZ extents are defined.
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How the DZ can be handled in PA

! DZ is part of a system #### interactions !
! Have been considered in the past
! Albeit mostly from phenomenological point of view

! EBS####DZ interactions
! Example: alkaline plume from concrete components of EBS

� Modify fluid flow properties
� Modify radionuclide transport properties
� Alter swelling & creep characteristics, self-sealing capacity

! DZ####EBS interactions
! Example: Mechanical
! Example: Production and release of aggressive species

� Sulfates, thiosulfates,... produced during open-drift period (O2)
� ... that could later migrate towards for metallic barriers & enhance corrosion.
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How the DZ can be handled in PA

! Summary: the Damaged Zone (DZ) considered...
! as a pathway for RNs to bypass the geological barrier

� Has been explicitly represented in PA models
� Calculation results indicate (very) limited effect

! as a region of the geological barrier that is less effective
at attenuating and delaying releases
� Data (ηηηη, Dp, Kd,…) can be incorporated in PA models
� Conservative assumptions: limited effect

! as interacting with the EBS
� Mostly pheno. studies; may support PA assumptions, 

building of plausible evolution scenarios.

! Objectives of this presentation """"

! Repository systems in clay """"
! Typical layouts
! Long-term safety
! The roles of clay
! Expected temperature evolution (current designs)

! Handling of a damaged zone in performance 
assessment """"
! Performance assessment
! The damaged zone (DZ)
! How the DZ has been handled until now

! How to ensure seamless integration of DZ / THM(C) 
research & PA ?

Plan
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How to ensure seamless integration of DZ / 
THM(C) research & PA ?

! The challenge: 

Put together the info gathered from THM(C) / DZ 
research (experiment results, models,...) & Performance 
Assessment (system analysis, simplified models,...) in 
the perspective of a safety case, i.e. assess to which 
extent the results indicate that:

� �a disposal system is safe (safety functions)

� �a disposal system is well understood (especially 
its evolution)

Performance Assessment & Science
(P. Zuidema, Paris 2007)

! For a convincing safety case, Science has to 
! provide process understanding (incl. quantification on relevant 

scales)
! characterise uncertainties (alternative concepts & interpretations, data 

uncertainty, variability)
! review the assumptions / simplifications (as proposed by PA) present 

in assessment models & data for consistency
! accept that limitations in understanding need to (and can) be 

"bounded" by pessimistic or conservative assumptions
! ensure that conservative assumptions are justified and explicit

! ... and Performance Assessment has to
! be open minded for the input provided by science 
! ensure that best use is made of the available scientific understanding
! acknowledge in the synthesis the limitations of the analysis (no exact 

prediction but a sufficiently reliable illustration of safety)
! Both Science and Performance Assessment have to 

work together as a team



19

How to ensure seamless integration of DZ / 
THM(C) research & PA ?

! Work as team """"

! Some practical integration tools (as used within 
TIMODAZ)
! Safety functions of a disposal system
! Questionnaire about expected evolution
! The 5 questions

Tool 1: safety fonctions
! Several variants are possible

! national programmes, system specific
! Example, ONDRAF:

� Isolation (I): prevent direct access, inadvertent human intrusion 
and limit consequences (damage to system)

� Confinement (C): as much as possible, let radionuclides decay 
within the disposal system

� Delay and attenuation of the releases (retardation, R) to the 
environment of radionuclides that do not decay to insignificance
within the system
� R1: limit the release rate from waste packages (conditions 

favourable to slow degradation of packaging, waste matrix)
� R2: limit water flow through the system (diffusion is dominant 

transport mechanism for radionuclides)
� R3: retard contaminant migration (precipitation, sorption)

! Everyone: "How does my work, my models, my 
experiments, my results relate to these safety 
functions ?"
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Tool 2: questionnaire about expected evolution

! As conditions changes, the dZ and DZ evolve:
! Open drift (suction, O2 ,… )
! Waste emplacement (heating starts)
! Initial closure (begin of EBS saturation)
! Heating-cooling period
! Long-term chemical (biological ?) evolution
! EBS failure, radionuclide releases

! Try to "tell the story"
! In 1 page, write your current view about the expected 

evolution of the clay around the engineered barriers, 
during the first 10,000 years, with respect to p.p., stress 
paths, localisation, sealing,...

TIMODAZ

Tool 3: the "5 questions"

! 5 key questions:
! Q1: What is the expected evolution of the DZ during the 

thermal period ?
! Q2: What are the main uncertainties about DZ evolution 

and how can these uncertainties be dealt with ?
! Q3: Under which conditions can the favourable clay 

properties be modified during the thermal period and how 
much can these properties be affected ?

! Q4: Under which conditions do the change become 
irreversible, i.e. under which conditions will the future 
properties of the clay differ from the currently observed 
properties.?

! Q5: To which extent can temporary or permanent 
alterations of favourable clay properties really affect 
barriers and safety functions of the system, i.e. which 
alterations are significant for system performance ?
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Testing of integration tools within TIMODAZ

! Together, use of the integration tools should
! provide a set of reasoned arguments to support claims 

about the safety of repositories in clay
! alternatively, highlight remaining knowledge gaps or 

unsolved problems

! Of particular interest
! Fate of favourable clay properties in DZ ?

� k, Dp, sorption, swelling, creep, self-sealing, stability,…

! DZ evolution, at the scale of the system ?


